
ROM Hacking 202
Finding and reversing the decompression algorithm

You will need:
● BGB emulator
● The example game’s ROM: Kikansha Thomas - Sodor-tou no Nakamatachi (J) [C][!]
● Some comfortability with programming concepts
● Determination

● Python 3, if you want to run the tool; but it also makes for a good calculator

If you have not yet done so, please read the ROM Hacking 201 document by abridgewater.

Throughout this tutorial I try to use the format for addresses and values you will see on screen.
These can differ in that some will be a prefix plus a hexadecimal address like ROM0:1084 and
some will simply be a hex address such as 1084. When discussing abstract hexadecimal
values, I’ll use the 0x prefix as in 0x1084 and they will be ordered as you type them into a
calculator. Regardless of the format, all numbers in this document (besides the title, of course)
are hexadecimal (or under 10 so it doesn’t matter).



Preface
Following off an early version of abridgewater’s work on the decompression algorithm, I set out
to implement a tool to decompress the graphics. The algorithm was not quite complete so I had
to go looking at the game code to figure it out. Thus, this will be a tutorial on how to reverse
engineer the algorithm, in part, from the assembly using the BGB debugger.

I had no background on Game Boy itself before starting this endeavor, and as such, this will be
written from that perspective. I did, however, have a good deal of ASM experience from other
situations and will do my best to explain what of that experience was useful in reversing this
algorithm.

To start, a summary of the algorithm as described by abridgewater:

There is a 4 byte header, the first two-byte value is some kind of offset (read: unknown
use), the second is the size of the compressed data. The compression algorithm has a
control byte which is read LSB to MSB (0bE000000S, S = start, E = end). If the bit is a 1,
copy the next byte to the decompression stream as-is. If the bit is a 0, the next byte is
the relative offset indexing backwards (from the cursor) into the decompression stream
such that a value of 0 is the most recent byte, a value of 1 is the byte before it, etc. The
following byte is the amount to copy.

In terms of background assembly information, it’s useful to be familiar with common mnemonics
(aka operations) such as JR (Jump Relative). These will be discussed as they come up,
because there are quite a few. Before that, it’s important to be familiar with the concepts of how
a processor works at a high level, and what all the parts are that you will see on the debugger
screen and other tools.

If you haven’t already, set up BGB and load up your Kikansha Thomas ROM. Right-click the
screen and select “Other → Debugger” to open the debugger. You’ll see a window like this:



There are four boxes on this screen. The upper-left is the disassembly view, the upper-right is
the register view, the lower-left is the memory view, and the lower-right is the stack view. Now
for what these terms (and more!) actually mean:

🇶 Disassembly

🇦 This is the interpretation of the bytes as code. Reading from left to right in the
disassembly view, you see: the address of the bytes, the bytes themselves, the
Z80 disassembly itself, and then some comments (anything following a
semicolon). Just because something disassembles does not mean it’s code! Data
is arbitrary! It’s only code if it’s executed.

The blue line in this view in the screenshot above is where the Program Cursor
currently is. It means that, when the execution is resumed, that operation will be
the next one to execute. Thus, it is code.

Of the disassembly, there are a few terms to understand:

The operation (aka instruction) is all the parts: the operator and its operands. It
can also refer to the bytecode it assembles to. This is enough to perform some
simple instruction which changes the state (the registers, I/O, memory, etc) for
instance a single addition. If an operation changes the value in either operand, it
will always be the first one, hence calling it the destination. However, in BGB
syntax, for many arithmetic operations, the only destination can be A, so it’s
elided. That is, if you see the operation add b then this is equivalent to the C
code A += B or A = A + B. That is, “Add A and B then put the sum in A”.
The operator (aka mnemonic) is essentially the name of the function you want to
perform. It’s a shorthand name because this was popular in the last century due
to the math influence. You can look up a list, but you only need to if you’re
interested. The ones we use will be explained during the tutorial.
The operands are arguments to the operation. They are not everything the
operation may affect, however. Most operations will also affect the flags and
sometimes affecting the lower half of a composite register will affect the upper
half (more on registers below) or vise-versa.
Comments are informative and are not part of the instruction. They’re prefixed by
a semicolon (;), as discussed above.



🇶 Registers

🇦 Registers are essentially variables that live inside the CPU. Some of them have a
special meaning and some don’t. They have a certain size, measured in bits, and
some of them can be decomposed. For instance, DE’s bytes can be addressed as
D and E separately.

For our purposes you will need to know that all CPUs have a Program Counter
(usually called PC, as it is here) and a Stack Pointer (usually called SP, as it is
here). There is also a flags register, whose name always changes, but you can
see the checkboxes on the right-hand side here which are the individual flags.

The flags register is a bitfield, meaning its individual bits represent binary states,
hence why it’s represented by checkboxes. There are two flags you’ll find on
every system which you need to know: Z (for Zero) and C (for Carry). For many
arithmetic operations, if the resulting value is zero, the Z flag is set. Carry flag can
differ slightly between systems, but it always has to do with an overflow of some
kind; for Game Boy it’s an unsigned overflow (so passing the 0xff/0x00 boundary
in either direction). Importantly, the carry flag can also be used in certain
arithmetic operations. For instance, if you find RRC (Rotate Right through Carry)
you can assume the carry flag will be included in the rotation somehow (the exact
details are unnecessary).

It’s important to understand the concept of flags because you will find what are
called “conditional jumps” or occasionally Jcc. In BGB these are disassembled as
something like jr nz,024C which reads as “Jump Relative if Not Zero to the
address 0x024C” (BGB calculates the absolute address for you and is showing
that, in the bytecode it’s a relative address, hence the name).

🇶 Memory

🇦 The memory includes both the ROM and the RAM. In BGB, the sections are
prefixed by the name of the memory so it’s easy to identify. ROM0 is bank 0 of
the ROM, RO## is bank ## of the ROM, VRA# is bank # of the VRAM, and so
forth. You won’t need to memorize these or know them in too much detail. The
other tools BGB provides will help us to understand these in the way that we
need to.

From this view we can search the memory and set access breakpoints, which will
be important later.

🇶 Stack and heap

🇦 The stack is a section of RAM (in GBC’s case, HRAM) which is used to store
information temporarily. Registers will be pushed to the stack occasionally for



various reasons, and, importantly, return addresses (from CALLs) will be pushed
to the stack and used by the RET operations to return execution flow to the point
of origin.

Pushing some value to the stack means to add that value to the top of the stack
(and adjust the stack pointer so that it points to that new location). Popping a
value means to remove that value from the stack and load it into some register
(which will be specified) then adjusting the stack pointer to point to the address of
what was under that value in the stack. If you think of this like a stack of dishes,
pushing a value to the stack is adding a new plate on top, and popping is
removing the top-most plate. The top of the stack is literally the top-most plate
currently on the stack.

The stack view looks like an upside-down version of the memory view because it
is. The stack is nearly always located at the end of available RAM and its
contents can be accessed and manipulated in the same way as normal memory.
The head of the stack is pointed to by SP; and when something is pushed to the
stack, SP is decremented by that size, because the stack grows upwards from
the bottom of RAM (like a stack of dirty clothes). The heap is the unused portion
of the potential stack space, from the address at which it’s safe to consider this
memory space to be reserved for the stack (the start of HRAM, probably) until
SP. When you compile C code, local variables will be allocated on the heap.

🇶 Breakpoints (BP)

🇦 There are two kinds of breakpoints we care about. In BGB they’re called
Breakpoints and Access Breakpoints. Respectively, these are breakpoints for
execution and for memory access. You can place the former by double-clicking a
line in the disassembly view and the latter by right-clicking a byte in the memory
view and selecting Set Access Breakpoint. The details of these will be discussed
as they’re used, but keep in mind that this essentially means you can stop
execution whenever some memory (or code; remember: arbitrary) is executed,
read from, or written to; and you can select which.

🇶 Tiles, sprites, etc

🇦 In embedded systems like this, there tend to be graphics controllers which have
simple ways to put graphics onto the screen. The programmer doesn’t draw
pixels to the screen, but instead instructs the renderer about where the tiles and
sprites are located in memory and how to render them onto the screen.

Tiles are, for GB, 8x8 graphics which can be placed on the screen in order to
make a background. They must be placed at 8 pixel boundaries, meaning they
can’t overlap.



There are two important concepts here, the tileset and the tilemap. The tileset is
the actual graphics data, the pixels themselves, which on GBC is a 2bpp (2 bits
per pixel) sequence that indexes into a palette which is assigned separately,
which you can see in the “Tiles” tab of the “VRAM Viewer”. The tilemap is the
assignment of those tiles onto the background render, which you can see in the
“BG map” tab of the “VRAM Viewer”.

We’re not dealing with sprites in this tutorial, but they’re controlled by a sprite set
(or sprite sheet) and the OAM (Object Attribute Memory). They’re used to display
graphics which can move over the background, like game characters.

🇶 Little endian

🇦 Almost every platform you’ll encounter uses little endian, which means the least
significant byte is listed first for multi-byte values in memory. This does not apply
to registers or the disassembly view or anything like that, it only applies to raw
memory.

As an example, if you see a byte sequence of 55 AA and you happen to know
that it is indeed a 16-bit value, the real value will be 0xAA55.

For reference, big endian is the opposite and is also called network byte order.
When people refer to the endianness of a system, they’re talking about whether
it’s big or little endian.

🇶 References and dereferencing

🇦 A reference (aka pointer) is an address which represents a location in memory
and is stored as a regular number. Remember, data is arbitrary, everything is just
numbers. So long as the number is within the valid memory range, it can be
treated as an address. Treating a number as an address, and reading data from
that location in memory, is called dereferencing. In BGB’s syntax this is
represented as enclosing the register whose value is being used as a reference
in parentheses. For example, ld a,(hl) if HL contains the value 0x1000, then
you can, in the memory view, “right-click → Go to…” 1000 and click ok to be
taken to that location in memory, and see what data will be loaded into A.



The real tutorial
What we need is the location of the decompression algorithm, in full. So, how? Well, we know
what we’re decompressing (graphics), and where those are in memory, sort of. So let’s get the
specifics. Make sure the game is on the title screen, as that’s the graphics we’ll be working with.
Now pause the game if it’s not already. We go to Window → VRAM Viewer from the debugger
window to open the graphics viewer, and we want to look at the Tiles tab because the title
screen is made up of tiles. We want to pick some distinct tile, so one that’s not a solid color, for
instance tile 03 in the lower left pane. It shows an address of 0:9030 so let’s go take a look there
in the memory view. Right-click in the memory view and select “Go to…” then type “0:9030”
without quotes and click OK. It will take you to VRA0:9030 where you’ll see the following:

VRA0:9030 00 FF 00 FF 00 FF 00 FF|00 FF 00 FF 38 C7 FE 01| ............8Çþ.

The 38 is unique enough for our purposes, so we’ll use that one. We want a distinct one,
because it’s less likely to be written as that value for any other purpose besides the one we care
about. So click the 38 and right-click and select “Set access breakpoint” which will pop up the
screen with the “addr range” field pre-filled. Make sure “on write” is the only checkbox which is
checked (the default), type 38 into the “value” field, and finally click the “Add” button. Now, in
order to trigger this BP, since the graphics are already decompressed, we need to restart the
game. Right-click the game screen and select “Reset gameboy *” then select “Run → Run” from
the debugger window. The BP will immediately be triggered at this line:

ROM0:18DA 12 ld (de),a ; 2  26

This operation is “Load A into the address pointed to by DE”. Essentially, as expected, it writes
A (which contains 0x38) to the memory position we asked the emulator to watch. Note this
address (tip: you can set a Breakpoint here then disable it from the “Debug → breakpoints”
menu in order to save it as a bookmark). However, typically the function we end up in from
doing this isn’t the one we need, so we want to go higher. BGB has a nice function for this!
Select “Run → Step out” to go up to the calling function. We will end up on the address after the
call to this function, which will look like this:

ROM0:1081 CD A4 18 call 18A4 ; 6 19

➨ROM0:1084 CD 9C 10 call 109C ; 6 25

So the function we were in starts at ROM0:18A4, also an important thing to note. So where are
we now? It might be what we need, but we need to know where it starts. If we step out again,
we find it was a call to 1048. Great! Let’s go there and set a BP. Right-click, select “Go to…” and
type in “1048” without quotes then click OK. It will jump to the start of the function and we can
double-click to set a BP there. Now restart again and we’ll see what this does.

Stepping through this code is a bit long and complicated. The important thing to do is watch the
registers and how they change as well as what memory is being accessed. But we don’t have to



go one step at a time and decompile the thing, we just want to know some specific information.
So let’s look at the call we want and work backwards to see what’s important, and what we
should watch out for. Scroll back down to ROM0:1081 and we can see it sets values to H and L
as well as pushing HL to the stack before doing so. Because there’s a pop HL right after the
second call, we can assume that the push HL is irrelevant to the call (it’s just being stored
because it’s important to this function, and needs to be restored after these calls) so likely the
arguments to 18A4 are simply H and L (or HL as a whole, since they’re the decomposition of
that). If we remember from earlier, DE contained the address of the destination in RAM, so it
may also be important that D and E are assigned to just a bit earlier than H and L. Let’s take a
look at the supposed decompression function at 18A4 to see if DE has changed at all. A quick
visual scan between 18A4 and 18DA shows that indeed, DE has no reassignments, so that load
is important to us. We could go through and figure out every important thing, but let’s see where
we can get from here. We can always go back (tip: if you’re working on something that’s not at
the start of the game, use save states).



The two important commands for stepping through the code are Step Over (hotkey: F3) and
Trace (hotkey: F7) (normally called Step Into in other debuggers). Most of the time we’ll use
Step Over, but when we get to the call to ROM0:18A4, we’ll use Trace. Remember, we’re
looking for what data HL and DE contain and where they come from. We know that DE contains
the target address, but not where it comes from. We don’t know anything about HL yet.

If you know any of the mnemonics in the above, you can work out a bit of what’s about to
happen. Let’s trace backwards. HL is set from B and C (107F, 1080), DE is set from A (1074,
1076) which is set by the value at an address indicated by HL (1073, 1075), BC are also set by
an address in HL (1068, 106A), HL is 10C7 (105B) + DE (105E), and that DE is has a high (D)
of 0 (1059) and a low (E) of some longer arithmetic which originates with a value at 0xff98 on
the heap (1048). So let’s step through (F3/F7, as appropriate) and watch how A is calculated.

It first pulls the value from 0xff98 giving us this register view:

It may not be incredibly apparent since this is our first time looking at it, but A is the left two
digits in that number, the 04. And we can also see that in the stack view, if you scroll down to
HRAM:FF97 there’s a value of 0400 where the 04 has the address FF98 and the 00 has the
address FF97.
Next, it moves that value into e then performs a check. While OR means a bitwise or as one
might expect, since it’s against A, what it’s actually doing is, in C syntax, A | A which means
it’s essentially not doing anything. The value of A doesn’t change. However, the flags change. If
A was 0, this would “set” the value of A to 0, causing the zero flag to be set. The next operation
is a conditional jump saying that, if A was 0 (and this operation thus set the 0 flag), it should
jump to 108D. Since A was 04, the Z flag was unset and it does not jump.
Next it decrements A, setting it to 03 and there’s another Z check. If A had been 1, and thus
became 0 after the DEC, it would jump to 1092. Then it decrements A again, making it 2, and
has the same check again. Now it restores the original value back to A, from E.
Next it adds 0B, making A = 0F. Then it adds A to itself, effectively multiplying it by 2, which sets
A to 1E. It puts that back in E and uses it as an offset from 10C7.

So the final math, in C syntax, for what just happened is this: HL = 10C7 + (*(ff98) + 0B)

* 2 with a final value of 10E5.

Now it actually starts reading from this address; so let’s jump to it in the memory viewer and see
what it is. It’s located in ROM, so it’s probably important to us, and we should write down the
address for later.



ROM0:10E0 12 21 13 84 13 60 12 7B|13 9F 13 C0 13 F3 13 20| .!...`.{...À.ó.

So as we step through these assignments we can see A is set to 60 (and HL increments by 1,
so that’s what LDI does!) and H is set to 13. A then moves to L and it uses A to transfer a value
from the heap at ff9B (01) to the memory location stored in 2000 (which is 0x208F ?? dunno
where that goes off-hand, don’t care). The important part is HL has changed again, to 1360.

ROM0:1360 00 40 13 00 90 00 38 45|13 00 90 01 B6 49 13 00| .@....8E....¶I..

This is read into A which is copied to C, then A which is copied to B, then A which is copied to
E. So C = 00, B = 40, and E = 13. Now there’s some bitwise and calls, an INC, and a RET Z.
Hopefully you guess it, but this is another check. RET Z only returns if the zero flag is set, so it
is checking to see if (A & B & C) + 1 == 0. Under what conditions would this be true? Only if
A, B, and C were all 0xFF (because 0xFF + 1 == 0… when working with 8-bit values).
So the check doesn’t fire and it continues with this function. It puts E (13) back into A and
pushes AF (this function hasn’t assigned a value to F at all, but it’s currently 0). Now it loads the
next 3 bytes into E, D, and ff4F, which BGB helpfully informs us refers to the VRAM bank. So we
can infer that these 3 bytes are probably a VRAM address, and 0x9000 does make sense for
tile graphics (if you remember from our access BP, it was at 0x903C). This is definitely what we
need! And it is assigned to DE, so it makes sense. Note this ROM address and put a nice
sticker next to it.
That 13 from earlier is written to the 2000 indirection again, and then it loads BC into HL. BC
was from those first bytes at 1360, with a value of 4000, so the 13 and thus this 2000 indirection
are probably related, but who knows. Hopefully us, soon.

It’s that time now, we need to trace into ROM0:18A4 using the F7 key. We can see it
immediately increments HL twice then starts reading from it, so HL is clearly an address. Let’s
go there. This is the data from abridgewater’s work! So we’ve found the compressed data, in
bank 13 address 4000. Oh, we know that 13 don’t we? So those three bytes were the banked
address. What a win. The data at 0x1360 must be some sort of graphics table which terminates
with 0xFFFFFF. We’ll look into that later. It skips the first two bytes of the header, so that’s not
important for reading the compressed data. It reads the next two bytes and stores them in BC.
Then it stores 0 in 0xff9E and 0xff9F. This immediate load at 0x18AF after an assignment of the
same thing, indicates to me that this is the start of a loop (if this is the target of a later jump, it
makes sense to do this, because the value of 0xff9F will have changed).

Then it starts performing math that needs to be stepped through for you to understand, and
even then probably needs an explanation. SRL and RRA are types of shifts and rotations. With
these mnemonics you can remember it like this: the first will be S or R to indicate a Shift or a
Rotation. Shifts eliminate bits from one side whereas rotations wrap them around. Then
somewhere in the acronym you’ll see L vs A which means Logical vs Arithmetic. This matters for
shifts when the value is negative (the MSB is 1) in that an arithmetic shift right will load a 1 into
the MSB, but a logical shift right will load a 0. The distinction may or may not matter for other
operations (left shifts or rotations) but theoretically it doesn’t. Lastly the third element of the



acronym is either L or R for Left or Right. There may be a C somewhere near the end of the
acronym (in GBC, like RRCA) which indicates that it goes through the carry flag as if it were an
extra bit in the register. You will see these in action as you step through.

Now as we step through this algorithm, remember what we know: there’s a control byte which
specifies what the next 8 records are, if the corresponding bit is 1 then the record is a
single-byte literal, if it’s 0 then the record is a 2-byte repetition description. I will spoil you now
and say that the original description does not describe the repetition description correctly, as I
tested it by implementing it and attempted to decompress some graphics, so our goal here is to
figure out how that sequence actually works. In order to do that, we need to find the part of the
algorithm which uses those bytes.

You can find the section needed with an on-read access breakpoint, but since we want to
understand the control flow better and it’s probably not far, let’s step through the function and
see what happens. Step over ROM0:18BF and we can see the first control byte, 0x65, is loaded
into A then 0xff9E. ROM0:18C3~ROM0:18CB (where it restores A from 0xff9E) seems to be
some sort of check on BC, which stores the second 16-bit int from the header. We don’t really
care about this so let’s skip to when A is restored. The next command is RRCA which, if you
remember from above, is Rotate Right with Carry Arithmetically. So let’s convert 0x65 to binary
in order to see what to expect. A quick way to do this is to keep a Python console open and use
the command bin(0x65) which returns 0b1100101. So the LSB is set, we can expect C to be
set afterwards. The JR NC then decides where we go. If C is set we expect to go to the copy of
a literal byte, which we don’t care about. If it’s unset, we expect to go to where we want. So,
since this won’t go where we want, we can set a BP on ROM0:18DE ourselves and press F9
(for Run).

We’re now where we want to be. We need to decompile this code, so let’s read it over and
figure out what it means. If we glance through the code for branching operations (JR, JP, RET)
we see conditional RETs, one conditional JR which jumps backwards, and finally an
unconditional JP. So this JP is the absolute end of this (or the total) code section. We can then
just look over most of this and decompile it. A screenshot of this section is below.

First we take an inventory of what’s involved: 0xffA0, 0xffA2, 0xffA1, A, BC, HL, and DE. We
know what BC, HL, and DE should contain: that header element which is decreasing every
read, the cursor in the compressed data stream, and the cursor in the decompressed data
stream, respectively. We read the first byte of the record into 0xffA0 (thru A) then decrement BC
and do the same check as earlier. We then read the second byte into 0xffA2 and to the same
decrement and check against BC again. We can disasm this to:

mem_ffA0 = *compressed++;

if (--head2 == -1) ret;

mem_ffA2 = *compressed++;

if (--head2 == -1) ret;



Next it pushes BC meaning we can assume it’s no longer going to be head2 until it’s popped
again on ROM0:1912, then it restores A from 0xffA2, moves it to B, and then turns A into just
the upper nibble. SWAP moves that upper nibble to the lower position. Seems like this second
byte is actually regarded as two separate nibbles, then. This nibble is then stored in 0xffA1 and
it restores and ensures A as being just the original lower nibble. It adds 3 to this, moves it to B,
backs up HL, and sets it to the address of our earlier value stored in 0xffA0 (the first byte of the
record). The next part seems a bit obtuse, so let’s decompile what we have:

a = mem_ffA2;

mem_ffA1 = (a & 0xF0) >> 4;

b = (a & 0x0F) + 3;

To me, this next section looks obtuse because it’s splitting up DE and acting on it independently.
This clearly has a deeper meaning, but we’ll have to figure it out. A is currently 0x01 originally



from E and (0xffA0) is currently 0x00 originally from the first record byte. It subtracts these and
stores the result in C. Then it increments HL to 0xffA1, loads D into A, and this time does a
Subtract with Carry against (0xffA1) which was originally from the upper nibble of the second
record byte. So why with carry? Carry is set if the earlier subtraction underflowed. What this
means is that this is a 16-bit subtraction. It then stores the result in HL and dereferences it. This
means that mem_ffA0 is actually a 12-bit offset instead of 0xffA0 and 0xffA1 being two separate
8-bit values. Nice, this is part of the difference we needed to understand. Before indexing it, it
also decrements HL. So let’s put this together, adjusting the existing code to match our new info:

uint16_t offset = *compressed++;

if (--head2 == -1) ret;

uint8_t mem_ffA2 = *compressed++;

if (--head2 == -1) ret;

a = mem_ffA2;

offset |= (a & 0xF0) << 4;

b = (a & 0x0F) + 3;

hl = decompressed - offset - 1;

Finally we’re on the final stretch. It copies (HL) into (DE) through A, increments HL and DE,
decrements B, then, if B has not reached zero, returns to ROM0:190B, where we copy out of
(HL), again. This is a simple loop, so let’s implement it:

do {
*decompressed = *hl++;

decompressed++;

} while (--b);

That’s it! We’ve reached the end of the code segment. This is how the repetition record is
handled. To summarize, the record is two bytes of the form 0xLLUC where the offset from the
head of the decompression stream is 0xULL + 1 and the number of bytes to copy is 0xC + 3.

Next you can implement the rest of the algorithm we know with this decompilation and make
sure it works. Then, you’re free to make the code nicer. Of course, you can also just grab it from
GitHub too.

So what was that table we found? Let’s return to ROM0:1360 and take a quick look. It seems
like there are many sequences of 0xFFFFFF so it’s probably a section end rather than a table
end. In order to find where the table starts, compare the bytes with the structure we know until
something doesn’t match. It should be a series of 6-byte records followed by a 0xFFFFFF
terminator, where the second 3-byte entry should look something like 0x009000, that is, be a
VRAM reference. If we scroll back, we see highly entropic data around ROM0:10E0 so the next
terminator after that is at ROM0:1111. The pattern seems to terminate at ROM0:10F3, as the
three bytes before that are not a VRAM address.

https://github.com/logicplace/kks_thomas_decomp


Find the tilemap
Now that you’ve experienced finding the decompression algorithm. Finding the tilemap should
be a snap. Can you remember the process? First clear all your breakpoints. Now, here’s the
high-level overview: in the VRAM viewer go to the BG map tab and look for some tile,
mouse-over it and you’ll see the address in “Map address”. Simply set a on-write access
breakpoint on that address and work backwards from where it triggers to find the original
address in ROM. Good luck!

How to approach this without the head start
We started this tutorial with a decent idea of how the algorithm worked thanks to abridgewater.
But what if we didn’t? How would this be different? We’d start the same way and find the
algorithm in the same way, of course. However, we likely would’ve had to have reversed the
entire algorithm. In my opinion, that’s the easiest method once we’re sure we’ve found the
algorithm.

Once you rewrite the algorithm in some script language, extract a test case. That is, extract
some compressed data (from ROM) and its corresponding decompressed data (from RAM),
then run your tool over the compressed data and see if the output matches what you pulled from
RAM. If it does, then you can consider writing a reverse of the algorithm in order to make a
compressor, but this is rather difficult. The easiest way to make a compressor is to figure out
what algorithm it is, then find an existing implementation to copy and adjust for your needs. In
this case, the algorithm is LZ77.

Credits and thanks
● Author: YasaSheep
● abridgewater for the initial differential analysis of the algo, which made this work a lot

easier.
● Bunkai for starting this tutorial series.
● The RHDN community and all those involved in discussions of this ROM, such as: 256,

343, Bootleg Porygon, Lusofonia, Pluvius, and TF1945.


